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Spectral graph theory and its application in virus spread in a computer network 

Abstract: The survey encompasses an explanation of particular topics from the concept of 

the graph spectra independently of the area of computer science in which they're used. 

Eigenvalues and eigenvectors of numerous graph matrices seem in numerous papers on 

various topics relevant   to statistics and communication technologies. Particularly, we survey 

applications in modelling and searching internet, in computer vision, data mining, 

multiprocessor structures, statistical databases, and numerous different regions. 

Introduction: 

In this project we shall deliver an assessment of parts of theory of graph spectra that are 

useful in computer sciences. Here we will provide a survey of applications of the theory of 

graph spectra to computer science. Spectral graph theory represents these days a very useful 

mathematical tool in the information technology, enrolled from text search and retrieval, and 

for refining predictive-evaluation systems. Spectral graph principle is based on linear 

algebra, and its properly-evolved part, the matrix theory.Graph theory just facilitates in 

expertise structural relations in big data sets which includes even billion of elements (called 

vertices, or nodes), and relations among them represented by links (called edges in 

undirected case, or arcs in any other case). 

In this assignment we are not giving a survey on applications of matrices in computer 

science, or on applications of graphs in computer science. We need to survey applications of 

the theory of graph spectra (or of spectral graph theory) in computer science. 

 

Spectral graph theory is a mathematical principle in which linear algebra and graph theory 

meet. For any graph matrix M we can construct a spectral graph principle in which graphs are 

studied through eigenvalues of the matrix M. This theory is known as M-principle. A good 

way to keep away from confusion, to any notion in this theory a prefix M- could be added 

(e.g., M-eigenvalues). Frequently used graph matrices are the adjacency matrix A, the 

Laplacian L = D − A and the sign less Laplacian Q = D + A, in which D is a diagonal matrix 

of vertex degrees. The spectral graph idea includes all these unique theories together with 

interaction tools. It became identified in approximately the last ten years that graph spectra 

have several critical applications in computer sciences. Graph spectra appear within the 

literature in internet technologies, computer vision, pattern recognition, data mining, 

multiprocessor systems, and statistical databases and in many other areas. There are heaps of 

such papers. 

One should be stated that spectra of numerous graph matrices appear in applications. The 

adjacency matrix and Laplacian appear most often but also the sign less Laplacian in addition 

to normalized versions of those matrices. Incidence, distance and other matrices can be 

discovered as well. From time to time the considerations pass from graph matrices to popular 

ones; equivalently, weighted graphs appear rather than graphs. In some cases we stumble 

upon digraphs and hyper-graphs as properly. 

It could be observed that during maximum cases not only the eigenvalues but also the 

eigenvectors of relevant graph matrices appear in applications. 
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Several researchers in computer science declare that spectral graph theory is (one of) their 

scientific field(s). Notice that mathematicians usually communicate of the theory of graph 

spectra or just graph spectra. 

The books [1], [2] contain each a chapter on applications of graph eigenvalues. The book [3] 

additionally consists of a chapter on applications. There are sections on Physics, Chemistry, 

computer Sciences and mathematics itself.  

In keeping with its Preface, the motive of the e-book [4] is to attract the eye of mathematical 

community to swiftly growing packages of the theory of graph spectra. Besides classical and 

well documented applications to Chemistry and Physics, we are witnesses of the appearance 

of graph eigenvalues in computer science in various investigations. There also are 

applications in several other fields like Biology, Geography, Economics and Social Sciences. 

The book [4] contains 5 chapters: an introductory chapter with a survey of applications via 

consultant examplesand 4 case studies (one in computer science and three in Chemistry). The 

book [5] is an extended and progressed edition of the preceding one. 

The introductory text [6] offers an advent to the theory of graph spectra and a brief survey of 

applications of graph spectra together with a few decided on bibliographies on applications. 

we have stated applications to Chemistry, Physics, computer Sciences and mathematics itself.  

Relating to the book [1] as “the current standard work on algebraic graph concept”, Van 

Mieghem gave in his book [7] a twenty page appendix on graph spectra, hence pointing out 

the importance of this difficulty for communications networks and structures. The paper [8] is 

a tutorial on the basic facts of the theory of graph spectra and its applications in computer 

science delivered at the forty eighth Annual IEEE Symposium on Foundations of computer 

science. 

The two of us (D. C. and S. k. S.) have posted a survey [9] of the programs of graph spectra 

in computer science. we have diagnosed numerous applications inside the following branches 

of computer science: 

1. Expanders and combinatorial optimization,  

2. Complex networks and the Internet topology,  

3. Data mining,  

4. Computer vision and pattern recognition,  

5. Internet search,  

6. Load balancing and multiprocessor interconnection networks,  

7. Anti-virus protection versus spread of knowledge,  

8. Statistical databases and social networks,  

9. Quantum computing.  

Subsequently, we have also become aware of applications in  

10. Bioinformatics,  
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11. Coding theory,  

12. Control theory.  

 

This class of numerous packages carries some overlapping in the classified material. for 

example, methods of data mining (mainly, spectral graph clustering) seem in computer 

vision, social networks and internet search while several problems of combinatorial 

optimization are relevant for data mining (e.g., in clustering). Since methods of computer 

science are found in all branches of science, applications of graph spectral techniques to 

computer science are transferred to nearly all branches of science (telecommunications, 

electrical engineering, biology, chemistry, geography, social sciences, and so forth.). 

Sometimes by using the usage of the adjective “computational” you may denote those 

components of particular sciences which overlap with computer science (e.g., computational 

biology, computational chemistry, and many others.). In this sense one can speak of computer 

sciences as we have put in the title of this paper. 

Of course, graph spectra seem in computer science since graphs for themselves are relevant. 

The principle gain of using graph spectra comes from the fact that eigenvalues and 

eigenvectors of several graph matrices can be quickly computed (computational complexity 

is O (n3) where n is the number of vertices). However, spectral graph parameters contain a 

variety of records on the worldwide and neighbourhood). This includes some information on 

graph parameters that, in general, are computed by means of exponential algorithms (e.g. 

chromatic number, the size of maximal clique, etc.). For example, computing the chromatic 

wide variety of a graph with a few thousands vertices is a difficult venture even as 

eigenvalues and eigenvectors can be computed in a few seconds. 

Graphs which can be treated in computer sciences using graph spectra typically represent 

both some physical networks (computer network, net, biological network, etc.) or data 

structures (documents in a database, indexing structure, and so on.) within the first case the 

graphs usually have a great number of vertices (thousands or millions) and they're called 

complex networks while in the second case graphs are of small dimensions. 

A. Expanders and combinatorialoptimization 

 

One of the oldest applications (from 1970’s) of graph eigenvalues in Computer Science is 

related to graphs called expanders. Informally, we shall say that a graph has good expanding 

propertiesif each subset of the vertex set of small cardinality has a set of neighbours of large 

cardinality. Ex- panders and some related graphs (called enlargers, magnifiers, concentrators 

and super-concentrators, just to mention some specific terms) appear in treatment of several 

problems in Computer Science (for example, communication networks, error-correcting 

codes, optimizing memory space, computing functions, sorting algorithms, etc.). Expanders 

can be constructed from graphs with a small second largest eigenvalue in modulus. Such class 

of graphs includes the so called Ramanujan graphs. Paper [10] is one of the most important 

papers concerning Ramanujangraphs. 

 

Expanders are associated with some troubles of combinatorial optimization. More generally, 

several algorithms of combinatorial optimization are considered as part of computer science. 
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A sensor network consists of spatially distributed sensors (with limited capacities) and links 

connecting them. One of the basic problems with these networks is to design a topology 

(connection graph) thatmaximizestheratio ν2 / νnwhere νn is the largest while ν2 the second 

smallest eigenvalue of the graph Laplacian. This eigenvalue is called algebraic connectivity 

of the graph and was introduced by M. Fiedler [21]. 

 

The larger is this ratio, the faster is the convergence speed of the decision fusion algorithm, 

and as a consequence better the overall performance of the network. The same ratio is 

applicable for the process of synchronization in complicated networks [12]. In [25], it was 

pointed that (non-bipartite) Ramanujan graphs are good candidates for preferred topologies. 

There are many other troubles in sensor networks where the equipment from the 

combinatorial optimization and spectral graph concept can assist, say in solving partitioning, 

project, routing and scheduling issues. 

 

B. Complex networks and the Internet 
 

Complex networks is a not unusual name for various real networks which might be provided 

by means of graphs with an enormously great number of vertices. Right here belong internet 

graphs, phonographs, e-mail graphs, social networks and many other. Regardless of their 

variety such networks share a few not unusual properties. Several models of random graphs 

have been used to explain complicated networks inclusive of the classical Erd¨os-R´enyi 

model in which we've a consistent possibility for the existence of each edge. 

 

There are models where given degree distribution is realized. Main characteristic of complex 

networks is the degree and eigenvalue distribution. Both distributions obey a power law form 

x-β for a positive constant βIn particular, if nkdenotes the number of vertices of degree, then 

asymptotically nk= ak- β for some constant a. 

It was conjectured in [13] that in networks with degree power law the largest eigenvalues of 

the adjacency matrix have also a power law distribution. That was proved under some 

conditions in [13]. 
 

The power law for eigenvalues can be formulated in the following way. Let λ1, λ2…..be non-

increasing sequence of eigenvalues of the adjacency matrix, then asymptotically λk = ak-γ for 

some constant a and positive γ 

 

The Internet is a collection of thousands of local networks (Autonomous Systems) of 

computers (hosts and routers). Autonomous Systems are linked by a common set of protocols 

which enable communication and allow the use of services located at any of the other 

Autonomous Systems. 

 

The whole internet, or a part of it, may be represented by means of a graph in which the 

vertices correspond to hosts and routers while the edges correspond to physical connections 

between them. In any other representations the vertices correspond to self-reliant structures 

and the rims to the hyperlinks. Reading and modeling internet topology (i.e. the structure) is 

vital for protocol performance assessment and simulation of a ramification of community 

issues. The main theoretical fashions of the net use the concepts of complicated networks 

and, specifically, energy laws for stages and eigenvalues.   

 

It ought to be stated that spectra of several graph matrices seem in applications. The 

adjacency matrix and Laplacian seem most often however also the sign less Laplacian as well 
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as normalized versions of these matrices. Occurrence, distance and other matrices can be 

determined as well. Every now and then the issues flow from graph matrices to widespread 

ones; equivalently, weighted graphs seem as opposed to graphs. In a few instances we come 

across digraphs and hyper-graphs and corresponding matrices as well. 

 

One can notice that not only the eigenvalues but also the eigenvectors of relevant graph 

matrices appear in applications in most cases. In many papers the normalized Laplacian 

matrix L̂= 𝐷
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Empirical studies of the Internet topology have been conducted in many papers using the 

normalized Laplacian matrix L̂ =𝐷
−1

2
(D-A) 𝐷

−1

2
. This matrix has 1’s on the diagonal, and at 

an off-diagonal position (i,j) the entry is equal to 0 for non-adjacent and −1/√didjfor adjacent 

vertices belongs to the interval [0,2] independently of the number of vertices. The book [14] 

is devoted to the normalized Laplacian. 

 

The eigenvaluesγi= 1,2………nof L̂ in non-decreasingorder can be represented by points 

(
𝑖−1

𝑛−1
,γi) in the region[0,1] X[0,2] and can be approximated by a continuouscurve. It was 

noticed in [15] that this curve is practicallythe same during the time for several networks in 

spite of theincreasing number of vertices and edges of the correspondinggraph. Therefore the 

authors consider the spectrum of L̂ as afingerprint of the corresponding network topology. 

Aspectrally based measure of similarity between networkshas been introduced in [23], and 

applied to Internet topologyanalysis. 
 

C. Data mining 

 

Data mining is defined as a technique used to extract usable data from a larger set of any raw 

data. It implies analysing statistics patterns in large batches of facts using one or more 

software. Data mining has applications in multiple fields, like science and research. As an 

application of data mining, businesses can learn more approximately their clients and expand 

more effective strategies related to various commercial enterprise functions and in turn 

leverage resources in a more optimal and insightful way. This allows businesses be closer to 

their goal and make higher selections. Data mining involves effective data collection and 

warehousing in addition to computer processing. For segmenting the data and evaluating the 

possibility of future events, data mining makes use of sophisticated mathematical algorithms. 

Data mining is also called knowledge Discovery in data (KDD). 
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A description of spectral clustering techniques is given in the tutorial [15]. Here we expect 

that the data are represented by using a graph. We shall present a set of rules for graph 

clustering which is primarily based on the Laplacian matrix of a graph. 

 

Let G be a connected graph on n vertices. Eigenvalues in non-decreasing order and 

corresponding orthonormal eigenvectors of the Laplacian L̂=D-Aof G are denoted by v1= 

0v2……..vnandu1, u2,…….un, respectively. 

 

In order to construct k clusters in a graph we form an nXkmatrix u containing the vectors 

u1,u2……….uk as columns. In this way we have constructed a geometric representation G of 

G in the k-dimensional space Rk: we just take rows of u as point coordinates representing the 

vertices of G. Edges are straight line segments between the corresponding points. Now 

classical clustering methods (say k-means algorithm) should be applied to this new graph 

presentation. 

 

Graph representation obtained by the Laplacian matrix has been used in graph drawings [16], 

[17].Together with the Laplacian L and the normalized Laplacian L̂ also the matrix D-1Lhas 

been used in clustering algorithms. According to [15] the last matrix performs best. The 

indexing structure of objects appearing in computer vision (and in a wide range of other 

domains such as linguisticsand computational biology) may take the form of a tree. An 

indexing mechanism that maps the structure of a tree into a low-dimensional vector space 

using graph eigenvalues is developed in [23]. Similar techniques have been used in [27]. 
 

D. Computer vision and pattern recognition 

 

Spectral graph concept has been broadly implemented to resolve issues in the discipline of 

computer vision and pattern recognition. Examples include image segmentation, routing, 

image classification, and so on. These methods use the spectrum, i.e. eigenvalues and 

eigenvectors, of the adjacency or Laplacian matrix of a graph. 

 

A more sophisticated idea is to represent an image’s content by a graph with specially 

selected points as vertices. The interesting points are points in an image which have a well-

defined position and can be robustly detected. Several other graphs are used. Graphs 

appearing in computer vision usually have a lot of vertices and simple eigenvalues 

[20].Techniques from spectral-graph theory have been used to develop powerful algorithms 

in computer vision and pattern recognition. For instance, Shi and Malik [24] have shown how 

the Fiedler vector (i.e. the eigenvector associated to the second smallest eigenvalue of the 

Laplacian matrix) can be used to separate the foreground from the background structure in 

images. The original procedure from [18] has been improved by using the matrix D-1L(so as 

to maximize the normalized graph cut). 

 

More generally, image segmentation is an essential technique in computer vision and pattern 

recognition. The problem is to divide the image into regions according to some criteria. Very 

frequently the image segmentation is obtained using eigenvectors of some graph matrices. 

 

Graph clustering is also an important issue in computer vision and pattern recognition, since 

graphs can be used for the high-degree abstraction of scene and object structure. standard 

graph clustering methods need to clear up the correspondence problems between vertices of 

the original and the transformed graph what could cause computational problems. Luo, 

Wilson and Hancock [19], [20] have proposed spectral invariants for graph clustering.These 
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methods do not need to solve the vertex correspondence problem, instead they rely on using 

information from the spectrum of the Laplacian matrix. Finally, and we mention an 

application of the spectral graph theory in automatic cancer diagnosis, where the so called 

cell graphs are examined. They are extracted from biopsy images, and define a new set of 

features derived to distinguish the cancerous tissues from their healthy counterparts (see [26] 

for more details). 
 

E. Internet Search:  

 

Web search engines are based on eigenvectors of the adjacency and some related graph 

matrices. The most known systems are PageRank [21] (used in Google) and Hyperlinked 

Induced Topics Search (HITS) [22]. The structure of the Internet is represented in this 

context by a digraph G where web pages correspond to vertices and links between the pages 

(hyperlinks) to arcs. HITS exploits eigenvectors belonging to the largest eigenvalues of the 

matrices AAT and ATA where A is the adjacency matrix of a subgraph of G induced by the 

set of web pages obtained from search key words by some heuristics. The obtained 

eigenvectors define a certain ordering of selected web pages. 

 

Web search engines are based on eigenvectors of the adjacency and some related graph 

matrices. The most known structures are PageRank [21] (used in Google) and Hyperlinked 

induced topics search (HITS) [22]. The structure of the internet is represented in this context 

through a digraph G where web pages correspond to vertices and links between the pages 

(hyperlinks) to arcs. HITS exploits eigenvectors belonging to the largest eigenvalues of the 

matrices AAT and ATA where A is the adjacency matrix of a subgraph of G induced by the 

set of web pages obtained from search key words by a few heuristics. The obtained 

eigenvectors outline a certain ordering of selected web pages. 

 

PageRank uses similar ideas. Random walks are considered in this model. In fact, the 

adjacency matrix of G is normalized so that the sum of entries in each row is equal to 1. This 

is achieved by dividing the entries in each row by the out degree of the corresponding vertex. 

Equivalently, we form a new matrix P=𝐷+
−1where D+ is the diagonal matrix ofout-degrees. 

The matrix P is a transition matrix of a Markovchain and the normalized eigenvector of the 

largest eigenvalueof its transpose PT defines the steady-state of the chain. Pagesare ranked by 

the coordinates of this eigenvector. Expository paper [23] contains a survey of both 

techniques. 

 

There are many papers in computer science literature ondifferent aspects of using 

eigenvectors in Internet searchengines. 

 

Theorem. If A is the adjacency matrix of a graph, then the (i,j)-entry 𝑎𝑖𝑗
(𝑘)

 of the matrix Ak is 

equal to the number of walks of length k that originate at vertex iand terminate at vertex j. 

The same idea of ranking vertices appears with eigenvector centrality, which is also a 

measure of the importance of a vertex in a network. The vertex centrality is defined as the 

corresponding coordinate of the normalized positive eigenvector of the graph index. In fact, it 

assigns relative scores to all vertices in the network based on the principle that connections to 

high-scoring vertices contribute more to the score of the vertex in question than equal 

connections to low-scoring vertices. Google’s PageRank is a variant ofthe eigenvector 

centrality measure. For more details, see [14] 

 

    F. Load balancing and multiprocessor interconnection networks:  
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The activity which must be executed by a multiprocessor system is divided into parts referred 

to as standard jobs that are given to unique processors to address them. elementary jobs 

distribution among processors may be represented through a vector x whose coordinates are 

non-negative integers. 

Vector x is usually changed for the duration of the work of the system because some 

elementary jobs are executed even as new elementary jobs are permanently generated during 

the execution process. Of course, it would be ideal that the number of fundamental jobs given 

to a processor is the same for all processors, i.e., that the vector x is an integer multiple of the 

vector j whose all coordinates are equal to at least one. due to the fact this is not continually 

possible, it's miles reasonable that processors with a larger variety of fundamental jobs send a 

number of them to adjacent processors in order that the task distribution becomes uniform if 

viable. on this way the so called hassle of load balancing is vital in coping with 

multiprocessor structures. we shall gift an set of rules for the weight balancing trouble that's 

based at the Laplacian matrix of a graph. 

 

Let G be a connected graph on n vertices. Eigenvalues and corresponding orthonormal 

eigenvectors of the Laplacian L=D-A of G are denoted by ν1, ν2, ν3…………νn= 0 u1, u2…….…un, 

respectively.  

Any vector x from Rn canbe represented as a linear combination of the form x 

=α1u1+α2u2+α3u3…………..αnun 

By iterations 

x
(k)  

= (I- 
1

 𝛍
L) x

(k-1)    , k=1,2,3………………………….(m-1)           ………………………………(1)
 

 

The number of iterations in (1) is equal to the number of non-zero distinct Laplacian 

eigenvalues of the underlying graph. In addition, maximum vertex degree  of G also affects 

computation of the balancing flow. Therefore, the complexity of the balancing flow 

calculations essentially depends on the product m and that is why this quantity was 

proposed in [25] as a parameter relevant for the choice and the design of multiprocessor 

interconnection networks. See references [26], [27], [28], [29] for further information on the 

load balancing problem. For a survey of load balancing in wireless sensor networks the 

reader is referred to [30].If m is small for a given graph G, the corresponding 

multiprocessor topology was expected to have good communication properties and has been 

called well-suited.  
 

G. Anti-virus protection versus spread of knowledge 

 
The largest eigenvalue λ1of the adjacency matrix plays an crucial role in modelling virus 

propagation in computer networks. The smaller the largest eigenvalue, the larger the 

robustness of a network against the unfold of viruses. Infact, it was shown in [31] that the 

epidemic threshold in spreading viruses is proportional to 1/ λ1. Another model of virus 

propagation in computer networks has been advanced in [32] with the same conclusion 

concerning 1/ λ1 

 

The virus propagation model established in [31] is a discrete time model. It uses the vector Pt 

= (P1,t, P2,t, P3,t, P4,t…………..Pnt)
T  where Pi,tis the probability that the vertex iis infected at 

timet. 
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Given βand δ(where βis the virus birth rate on an edge connected to an infected vertex and 

δthe virus curing rate on an infected vertex), one can derive the following condition 
β

δ
<

1

λ1
 

for elimination of viruses. We see that the network is as safer as the smaller is λ1. We can 

denote the quantity = 
1

λ1
 asthe epidemic threshold in spreading viruses. Hence if 

β

δ
<

1

λ1
the 

network is safe and in the opposite case the network willbe conquered by viruses. 
 

The intuitive explanation to this definition is that even as extra paths of a set duration we 

have in order to send information, we can cut up the information on these paths and 

coordinate them to arrive with the same number of hops at the receiver. This has the gain of 

equalizing source destination delays of packets that belong to the same class, which permits 

one to minimize the amount of packets that come out of sequence. This is applicable since in 

data transfers, out of order packets are misinterpreted to be lost which results not only in 

retransmissions but also in drop of systems throughput (see [15]).There are numerous 

mathematical investigations in both directions: to find graphs in particular lessons of graphs 

which have minimal or maximal largest eigenvalue (see, e.g. [33],[3]). 
 

H. Statistical databases and social networks 

 

 Statistical databases are those who permit only statistical access to their records. Individual 

values are normally deemed confidential and are not to be disclosed, either directly or 

indirectly. Thus, users of a statistical database are restricted to statistical types of queries, 

such as looking for the sum of values, minimum or maximum value of some records, etc. 

Moreover, no sequence of answered queries should enable a user to obtain any of the 

confidential individual values. We consider here the restricted case where queries are related 

to the sum of values of records in the database and each record is contained in at most 2 

queries. Then the query matrix corresponds to an incidence matrix of a graph G, where 

queries correspond to vertices and records correspond to edges. The results from [8], [10] 

display an interesting connection among compromise-free query collections and graphs with 

Least eigenvalue -2 [30]. This connection become diagonsed in the paper [9]. 
 

I. Quantum computing:  

 

Quantum computation is a model of computation based totally on the principles of quantum 

mechanics although the corresponding computers have now not yet been found out. no matter 

the nonexistence of actual machines, the principle of quantum computingis very lots 

developed. For a well-known overview on Quantum information technology see, as an 

instance, special issue of the journal NEC research & developments [34]. 

 

It has been discovered recently [16] that integral graphs can play a role within the so called 

perfect state transfer in quantum spin networks. Speaking in terms of quantum physics, there 

is ideal state transfer between  vertices of a graph if a single excitation can travel with fidelity 

one between the corresponding sites of a spin system modelled by the graph. 

 

 

Let G be a graph with adjacency matrix A and considerthe matrix H(t) = eiAtwhere tis a real 

variable andi2 = -1. According to [24], perfect state transfer occursbetween vertices u and v of 

G if there is a value of t suchthat |H(t)u,v|= 1. This can happen in integral graphs but 

notalways.Further details on this topic can be found in [11], [24]. 
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The 3-dimensional cube is the only connected cubic integral graph with perfect state transfer. 

Some other results in this direction have been obtained in [4], [5]. 

 

J. Bioinformatics 

 

The principle of complex networks is used in bioinformatics to present biological networks, 

as an instance, protein-protein interplay networks [12]. In this paper eigenvectors of 

numerous least eigenvalues of the adjacency matrix are used to identify bipartite subgraphs in 

a network corresponding budding yeast.Networks performing in biology have been analyzed 

by using spectra of normalized graph Laplacian in [2], [3]. Spectral techniques had been 

carried out in reading mind networks in [9]. any other application is associated with coming 

across genetic ancestry, see [26]. 

 

Conclusion: 

As we've got seen, spectral graph theory has numerous important applications in computer 

science. New applications seem very frequently. Our feeling is that cooperation between 

engineers and mathematicians concerning applications of spectral graph theory to computer 

science must be stepped forward for the advantage of both computer science and 

mathematics. 
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